32 research outputs found

    RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals using a Hash-based Seeding Mechanism

    Full text link
    Summary: Raw nanopore signals can be analyzed while they are being generated, a process known as real-time analysis. Real-time analysis of raw signals is essential to utilize the unique features that nanopore sequencing provides, enabling the early stopping of the sequencing of a read or the entire sequencing run based on the analysis. The state-of-the-art mechanism, RawHash, offers the first hash-based efficient and accurate similarity identification between raw signals and a reference genome by quickly matching their hash values. In this work, we introduce RawHash2, which provides major improvements over RawHash, including a more sensitive chaining implementation, weighted mapping decisions, frequency filters to reduce ambiguous seed hits, minimizers for hash-based sketching, and support for the R10.4 flow cell version and various data formats such as POD5. Compared to RawHash, RawHash2 provides better F1 accuracy (on average by 3.44% and up to 10.32%) and better throughput (on average by 2.3x and up to 5.4x) than RawHash. Availability and Implementation: RawHash2 is available at https://github.com/CMU-SAFARI/RawHash. We also provide the scripts to fully reproduce our results on our GitHub page

    TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering

    Full text link
    Basecalling is an essential step in nanopore sequencing analysis where the raw signals of nanopore sequencers are converted into nucleotide sequences, i.e., reads. State-of-the-art basecallers employ complex deep learning models to achieve high basecalling accuracy. This makes basecalling computationally-inefficient and memory-hungry; bottlenecking the entire genome analysis pipeline. However, for many applications, the majority of reads do no match the reference genome of interest (i.e., target reference) and thus are discarded in later steps in the genomics pipeline, wasting the basecalling computation. To overcome this issue, we propose TargetCall, the first fast and widely-applicable pre-basecalling filter to eliminate the wasted computation in basecalling. TargetCall's key idea is to discard reads that will not match the target reference (i.e., off-target reads) prior to basecalling. TargetCall consists of two main components: (1) LightCall, a lightweight neural network basecaller that produces noisy reads; and (2) Similarity Check, which labels each of these noisy reads as on-target or off-target by matching them to the target reference. TargetCall filters out all off-target reads before basecalling; and the highly-accurate but slow basecalling is performed only on the raw signals whose noisy reads are labeled as on-target. Our thorough experimental evaluations using both real and simulated data show that TargetCall 1) improves the end-to-end basecalling performance of the state-of-the-art basecaller by 3.31x while maintaining high (98.88%) sensitivity in keeping on-target reads, 2) maintains high accuracy in downstream analysis, 3) precisely filters out up to 94.71% of off-target reads, and 4) achieves better performance, sensitivity, and generality compared to prior works. We freely open-source TargetCall at https://github.com/CMU-SAFARI/TargetCall

    RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

    Full text link
    Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing time and cost. However, existing works utilizing Read Until either 1) require powerful computational resources that may not be available for portable sequencers or 2) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight variations in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash on three applications: 1) read mapping, 2) relative abundance estimation, and 3) contamination analysis. Our evaluations show that RawHash is the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. When compared to the state-of-the-art techniques, UNCALLED and Sigmap, RawHash provides 1) 25.8x and 3.4x better average throughput and 2) an average speedup of 32.1x and 2.1x in the mapping time, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash

    A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers

    Full text link
    Nanopore sequencing generates noisy electrical signals that need to be converted into a standard string of DNA nucleotide bases using a computational step called basecalling. The accuracy and speed of basecalling have critical implications for all later steps in genome analysis. Many researchers adopt complex deep learning-based models to perform basecalling without considering the compute demands of such models, which leads to slow, inefficient, and memory-hungry basecallers. Therefore, there is a need to reduce the computation and memory cost of basecalling while maintaining accuracy. Our goal is to develop a comprehensive framework for creating deep learning-based basecallers that provide high efficiency and performance. We introduce RUBICON, a framework to develop hardware-optimized basecallers. RUBICON consists of two novel machine-learning techniques that are specifically designed for basecalling. First, we introduce the first quantization-aware basecalling neural architecture search (QABAS) framework to specialize the basecalling neural network architecture for a given hardware acceleration platform while jointly exploring and finding the best bit-width precision for each neural network layer. Second, we develop SkipClip, the first technique to remove the skip connections present in modern basecallers to greatly reduce resource and storage requirements without any loss in basecalling accuracy. We demonstrate the benefits of RUBICON by developing RUBICALL, the first hardware-optimized basecaller that performs fast and accurate basecalling. Compared to the fastest state-of-the-art basecaller, RUBICALL provides a 3.96x speedup with 2.97% higher accuracy. We show that RUBICON helps researchers develop hardware-optimized basecallers that are superior to expert-designed models

    BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

    Full text link
    Generating the hash values of short subsequences, called seeds, enables quickly identifying similarities between genomic sequences by matching seeds with a single lookup of their hash values. However, these hash values can be used only for finding exact-matching seeds as the conventional hashing methods assign distinct hash values for different seeds, including highly similar seeds. Finding only exact-matching seeds causes either 1) increasing the use of the costly sequence alignment or 2) limited sensitivity. We introduce BLEND, the first efficient and accurate mechanism that can identify both exact-matching and highly similar seeds with a single lookup of their hash values, called fuzzy seeds matches. BLEND 1) utilizes a technique called SimHash, that can generate the same hash value for similar sets, and 2) provides the proper mechanisms for using seeds as sets with the SimHash technique to find fuzzy seed matches efficiently. We show the benefits of BLEND when used in read overlapping and read mapping. For read overlapping, BLEND is faster by 2.6x-63.5x (on average 19.5x), has a lower memory footprint by 0.9x-9.7x (on average 3.6x), and finds higher quality overlaps leading to accurate de novo assemblies than the state-of-the-art tool, minimap2. For read mapping, BLEND is faster by 0.7x-3.7x (on average 1.7x) than minimap2. Source code is available at https://github.com/CMU-SAFARI/BLEND

    GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

    Full text link
    Nanopore sequencing is a widely-used high-throughput genome sequencing technology that can sequence long fragments of a genome into raw electrical signals at low cost. Nanopore sequencing requires two computationally-costly processing steps for accurate downstream genome analysis. The first step, basecalling, translates the raw electrical signals into nucleotide bases (i.e., A, C, G, T). The second step, read mapping, finds the correct location of a read in a reference genome. In existing genome analysis pipelines, basecalling and read mapping are executed separately. We observe in this work that such separate execution of the two most time-consuming steps inherently leads to (1) significant data movement and (2) redundant computations on the data, slowing down the genome analysis pipeline. This paper proposes GenPIP, an in-memory genome analysis accelerator that tightly integrates basecalling and read mapping. GenPIP improves the performance of the genome analysis pipeline with two key mechanisms: (1) in-memory fine-grained collaborative execution of the major genome analysis steps in parallel; (2) a new technique for early-rejection of low-quality and unmapped reads to timely stop the execution of genome analysis for such reads, reducing inefficient computation. Our experiments show that, for the execution of the genome analysis pipeline, GenPIP provides 41.6X (8.4X) speedup and 32.8X (20.8X) energy savings with negligible accuracy loss compared to the state-of-the-art software genome analysis tools executed on a state-of-the-art CPU (GPU). Compared to a design that combines state-of-the-art in-memory basecalling and read mapping accelerators, GenPIP provides 1.39X speedup and 1.37X energy savings.Comment: 17 pages, 13 figure

    Utopia: Fast and Efficient Address Translation via Hybrid Restrictive & Flexible Virtual-to-Physical Address Mappings

    Full text link
    Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map to any physical address. This flexibility necessitates large data structures to store virtual-to-physical mappings, which leads to high address translation latency and large translation-induced interference in the memory hierarchy. On the other hand, restricting the address mapping so that a virtual address can only map to a specific set of physical addresses can significantly reduce address translation overheads by using compact and efficient translation structures. However, restricting the address mapping flexibility across the entire main memory severely limits data sharing across different processes and increases data accesses to the swap space of the storage device, even in the presence of free memory. We propose Utopia, a new hybrid virtual-to-physical address mapping scheme that allows both flexible and restrictive hash-based address mapping schemes to harmoniously co-exist in the system. The key idea of Utopia is to manage physical memory using two types of physical memory segments: restrictive and flexible segments. A restrictive segment uses a restrictive, hash-based address mapping scheme that maps virtual addresses to only a specific set of physical addresses and enables faster address translation using compact translation structures. A flexible segment employs the conventional fully-flexible address mapping scheme. By mapping data to a restrictive segment, Utopia enables faster address translation with lower translation-induced interference. Utopia improves performance by 24% in a single-core system over the baseline system, whereas the best prior state-of-the-art contiguity-aware translation scheme improves performance by 13%.Comment: To appear in 56th IEEE/ACM International Symposium on Microarchitecture (MICRO), 202

    ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis

    Full text link
    Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. We identify an urgent need for a flexible, high-performance, and energy-efficient HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out negligible computations using a hardware-based filter, and 4) minimizing redundant computations. ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and 27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x - 1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency by 64.24x - 115.46x, 1.75x, 1.96x.Comment: Accepted to ACM TAC
    corecore